एक आयत 48 सेमी लांब आणि 14 सेमी रुंद आहे. जर कर्ण लांब बाजूने θ कोन बनवतो, तर (sec θ + cosec θ) किती आहे?

This question was previously asked in
CDS Maths Previous Paper 9 (Held On: 2 Feb 2020)
View all CDS Papers >

Answer (Detailed Solution Below)

Option 1 :
Free
UPSC CDS 01/2025 General Knowledge Full Mock Test
120 Qs. 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

दिलेल्याप्रमाणे:

एक आयत 48 सेमी लांब आणि 14 सेमी रुंद आहे

वापरलेले सूत्र:

sec θ = कर्ण/पाया

cosec θ = कर्ण/पर्पेंडिक्युला

पायथागोरस प्रमेय

(कर्ण)2 = (लंब)2 + (पाया)2

गणना:

त्रिकोण ABC काटकोन त्रिकोण आहे:

कर्ण = AC = x = = 50

येथे,

Sec θ = AC/AB = 50/48

Cosec θ = AC/BC = 50/14

त्यामुळे,

(sec θ + cosec θ) = (50/48) + (50/14) = 1550/336 = 775/168 

∴ sec θ + cosec θ चे मूल्य 775/168 आहे

Latest CDS Updates

Last updated on Jul 7, 2025

-> The UPSC CDS Exam Date 2025 has been released which will be conducted on 14th September 2025.

-> Candidates can now edit and submit theirt application form again from 7th to 9th July 2025.

-> The selection process includes Written Examination, SSB Interview, Document Verification, and Medical Examination.  

-> Attempt UPSC CDS Free Mock Test to boost your score.

-> Refer to the CDS Previous Year Papers to enhance your preparation. 

More Trigonometry Questions

Hot Links: teen patti joy teen patti go teen patti yas teen patti dhani teen patti wink