Let u(x, t) be the solution of

utt − uxx = 0, 0 < x < 2, t > 0

u(0, t) = 0 = u(2, t), ∀ t > 0, 

u(x, 0) = sin (πx) + 2 sin(2πx), 0 ≤ x ≤ 2,

ut(x, 0) = 0, 0 ≤ x ≤ 2.

Which of the following is true?

This question was previously asked in
CSIR UGC (NET) Mathematical Science: Held On (7 June 2023)
View all CSIR NET Papers >
  1. u(1, 1) = −1.
  2. u(1/2, 1) = 0.
  3. u(1/2, 2) = 1.
  4. ut(1/2, 1/2) = π.

Answer (Detailed Solution Below)

Option 3 : u(1/2, 2) = 1.
Free
Seating Arrangement
10 Qs. 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Explanation:

Given 

utt − uxx = 0, 0 < x < 2, t > 0

u(0, t) = 0 = u(2, t), ∀ t > 0, 

u(x, 0) = sin(πx) + 2sin(2πx), 0 ≤ x ≤ 2,

ut(x, 0) = 0, 0 ≤ x ≤ 2.

which is a wave equation of finite length. So solution is

u(x, t) =  where

Here c = 1, l = 2, f(x) = sin(πx) + 2sin(2πx)

So, 

and u(x, t) = 

u(x, 0) =  = sin(πx) + 2sin(2πx)

Comparing we get

D2 = 1, D4 = 2, Dn = 0 for other natural number n

Hence we get

u(x, t) = sin(πx) cos(πt) + 2sin(2πx)cos(2πt)

Then u(1, 1) = 0

u(1/2, 1) = -1

u(1/2, 2) = 1

u(1/2, 1/2) = 0

Option (3) is correct, other are false.

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Partial Differential Equations Questions

Hot Links: teen patti app teen patti master 2023 teen patti gold teen patti tiger teen patti 500 bonus