Question
Download Solution PDFComprehension
निम्न दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए :
मान लीजिए कि फलन f(x) = x2 - 1 है।
\(\lim_{x \to 1} \{f \circ f(x)\}\) किसके बराबर है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFगणना:
दिया गया है,
फलन \( f(x) = x^2 - 1 \) है और हमें \( \lim_{x \to 1} (f \circ f(x)) \) ज्ञात करना है।
\( f \circ f(x) = f(f(x)) \)
दिया गया है \( f(x) = x^2 - 1 \), हम इसमें \((f(x))\) को प्रतिस्थापित करते हैं:
\( f(f(x)) = f(x^2 - 1) \)
अब, फलन \( f \) को \( (x^2 - 1) \) पर लागू करने पर:
\( f(x^2 - 1) = (x^2 - 1)^2 - 1 \)
यह सरल होकर निम्नवत हो जाता है:
\( f(x^2 - 1) = x^4 - 2x^2 + 1 - 1 = x^4 - 2x^2 \)
इस प्रकार, \( f \circ f(x) = x^4 - 2x^2 \).
अब, हमें \( \lim_{x \to 1} (x^4 - 2x^2) \) ज्ञात करना है।
फलन में x = 1 प्रतिस्थापित करने पर:
\( f \circ f(1) = 1^4 - 2(1^2) = 1 - 2 = -1 \)
∴ \( \lim_{x \to 1} (f \circ f(x)) \) का मान -1 है।
सही उत्तर विकल्प (1) है।
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.