Comprehension

निम्न दो (02) प्रश्नों के लिए निम्नलिखित पर विचार कीजिए : 
माना कि फलन f(x) = x2 + 9 है। 

\(\lim_{x \to 0} \frac{\sqrt{f(x)} - 3}{\sqrt{f(x)+7} - 4}\) किसके बराबर है?

This question was previously asked in
NDA-I (Mathematics) Official Paper (Held On: 13 Apr, 2025)
View all NDA Papers >
  1. 2/3
  2. 1
  3. 4/3
  4. 2

Answer (Detailed Solution Below)

Option 3 : 4/3
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
6 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

गणना:

दिया गया है,

फलन \( f(x) = \sqrt{x^2 + 9} - 3 \) और \( g(x) = \sqrt{x^2 + 16} - 4 \).है,

हमें यह ज्ञात करना है:

\( \lim_{x \to 0} \frac{f(x)}{g(x)} \)

अंश और हर दोनों को उनके संगत संयुग्मों से गुणा करने पर:

\( \frac{\sqrt{x^2 + 9} - 3}{\sqrt{x^2 + 16} - 4} \times \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3} \times \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 16} + 4} \)

अंश को सरल करने पर:

\( (\sqrt{x^2 + 9} - 3)(\sqrt{x^2 + 9} + 3) = x^2 \)

हर को सरल करने पर:

\( (\sqrt{x^2 + 16} - 4)(\sqrt{x^2 + 16} + 4) = x^2 \)

अब, व्यंजक बन जाता है:

\( \frac{x^2}{x^2} \times \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 9} + 3} \)

सरल करने पर और सीमा का मूल्यांकन करने पर:

\( \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 9} + 3} \) यह बन जाता है:

\( \frac{\sqrt{16} + 4}{\sqrt{9} + 3} = \frac{4 + 4}{3 + 3} = \frac{8}{6} = \frac{4}{3} \)

इसलिए, सही उत्तर विकल्प 3 है।

Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Limit and Continuity Questions

Get Free Access Now
Hot Links: teen patti gold new version 2024 mpl teen patti teen patti joy official