Question
Download Solution PDFएक त्रिभुज के शीर्ष A(1, 1),B(0, 0) और C(2, 0) हैं। त्रिभुज के कोण समद्विभाजक P पर मिलते हैं। P के निर्देशांक क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFगणना:
दिए गए बिंदु A(1,1), B(0,0), और C(2,0) हैं। कोण समद्विभाजक P (अंतःकेन्द्र) पर मिलते हैं।
भुजा की लंबाई की गणना करें:
\(a = BC = \sqrt{(2 - 0)^{2} + (0 - 0)^{2}} = 2\)
\(b = CA = \sqrt{(1 - 2)^{2} + (1 - 0)^{2}} = \sqrt{2}\)
\(c = AB = \sqrt{(1 - 0)^{2} + (1 - 0)^{2}} = \sqrt{2}\)
इसलिए, \(a + b + c = 2 + \sqrt{2} + \sqrt{2} = 2 + 2\sqrt{2}.\)
अंतःकेन्द्र सूत्र से,
\(X_{P} \;=\; \frac{a\,x_{A} + b\,x_{B} + c\,x_{C}}{a + b + c} \;=\; \frac{\,2\cdot 1 + \sqrt{2}\cdot 0 + \sqrt{2}\cdot 2\,}{\,2 + 2\sqrt{2}\,} \;=\; \frac{2 + 2\sqrt{2}}{2 + 2\sqrt{2}} \;=\; 1.\)
\(Y_{P} \;=\; \frac{a\,y_{A} + b\,y_{B} + c\,y_{C}}{a + b + c} \;=\; \frac{\,2\cdot 1 + \sqrt{2}\cdot 0 + \sqrt{2}\cdot 0\,}{\,2 + 2\sqrt{2}\,} \;=\; \frac{2}{2 + 2\sqrt{2}} \;=\; \frac{1}{\,1 + \sqrt{2}\,} \;=\; \sqrt{2} \;-\; 1. \)
∴ अंतःकेन्द्र \(P = \bigl(1,\;\sqrt{2} - 1\bigr) \) है।
इसलिए, सही उत्तर विकल्प 1 है।
Last updated on Jul 8, 2025
->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.
->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.
-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.
->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.
-> The selection process for the NDA exam includes a Written Exam and SSB Interview.
-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100.
-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential.