x2 के संबंध में 2x sin x2 का अवकलन कीजिए। 

  1. \(\rm {\sin x^2 + 2x \cos x^2 \over x}\)
  2. \(\rm {\sin x^2\over x} + 2x \cos x^2 \)
  3. 2 sin x2 + 4x2 cos x2 
  4. \(\rm {\sin x^2\over x} - \cos x^2 \)

Answer (Detailed Solution Below)

Option 2 : \(\rm {\sin x^2\over x} + 2x \cos x^2 \)
Free
General Knowledge for All Defence Exams (शूरवीर): Special Live Test
23.2 K Users
20 Questions 20 Marks 16 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

प्राचलिक रूप:

यदि f(x) और g(x), x में फलन हैं, तो 

\(\rm df(x)\over dg(x)\) = \(\rm \frac{df(x)\over dx}{dg(x)\over dx}\) 

गणना:

माना कि f(x) = 2x sin x2 और g(x) = x2 है। 

\(\rm \frac{df(x)}{dx}\) = 2 sin x2 + 2x cos x2 (2x)

\(\rm \frac{df(x)}{dx}\) = 2 sin x2 + 4x2 cos x2 

साथ ही

\(\rm \frac{dg(x)}{dx}\) = 2x

अब g(x) के संबंध में f(x) का अवकलन करने पर 

\(\rm df(x)\over dg(x)\) = \(\rm \frac{df(x)\over dx}{dg(x)\over dx}\) 

\(\rm df(x)\over dg(x)\) = \(\rm \frac{2 \sin x^2 + 4x^2 \cos x^2 }{2x}\)

\(\rm df(x)\over dg(x)\) = \(\rm {\sin x^2\over x} + 2x \cos x^2 \)
Latest Airforce Group X Updates

Last updated on Jul 11, 2025

->Indian Airforce Agniveer (02/2026) Online Form Link has been activated at the official portal. Interested candidates can apply between 11th July to 31st July 2025.

->The Examination will be held 25th September 2025 onwards.

-> Earlier, Indian Airforce Agniveer Group X 2025 Last date had been extended.

-> Candidates applied online from 7th to 2nd February 2025.

-> The online examination was conducted from 22nd March 2025 onwards.

-> The selection of the candidates will depend on three stages which are Phase 1 (Online Written Test), Phase 2 ( DV, Physical Fitness Test, Adaptability Test), and Phase 3 (Medical Examination).

-> The candidates who will qualify all the stages of selection process will be selected for the Air Force Group X posts & will receive a salary ranging of Rs. 30,000.

-> This is one of the most sought jobs. Candidates can also check the Airforce Group X Eligibility here.

Get Free Access Now
Hot Links: happy teen patti teen patti lotus all teen patti