Runge Kutta Method MCQ Quiz in తెలుగు - Objective Question with Answer for Runge Kutta Method - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 8, 2025

పొందండి Runge Kutta Method సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Runge Kutta Method MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Runge Kutta Method MCQ Objective Questions

Top Runge Kutta Method MCQ Objective Questions

Runge Kutta Method Question 1:

Find an approximate value of y when x = 0.1. The differential equation is given as dydx=1ex+y

Take step size of h = 0.1. initial conditions are y(0) = 1. Solve using Runge-Kutta Method. Calculate your answer up to four decimal places 

Answer (Detailed Solution Below) 1.0340 - 1.0350

Runge Kutta Method Question 1 Detailed Solution

Concept: by Runge-Kutta Method

y1 = y0 + k

k=16(k1+2k2+2k3+k4)

Calculation:

k1 = h f(x0, y0)

k1 = 0.1 × [f(x0, y0)]

x0 = 0, y0 = 1

f(0,1)=1e=1ek1=0.1e=0.037

k2=hf(x0+h2,y0+k12)f(0+0.05,1+0.0372)

f(0.05, 1.018)

k2=0.1×[1e(0.05+1.018)]

K2 = 0.034

k3=hf(x0+h2,y0+k22)f(0.05,1+0.0342)=f(0.05,1.017)k3=0.1×[1e(0.05+1.017)]

K2 = 0.034

k4=hf(x0+h,y0+k3)

k4=hf(0.05,1.034)k4=0.1×[1e(0.05+1.034)]

K4 = 0.034

k=16[0.037+2×0.034+2×0.034+0.034]

k = 0.0345

y1 = 1 + 0.0345

y1 = 1.0345

Runge Kutta Method Question 2:

dydx=2x+yand y(0)=1 then the value of y(0.1) where h=0.1 using Runge Kutta method of 3rd order___

Answer (Detailed Solution Below) 1.11 - 1.2

Runge Kutta Method Question 2 Detailed Solution

From Runge Kutta 3rd order,

y1=y0+16(k1+4k2+k3)

k1=hf(x0,y0)=0.1[2x0+y0]=0.1[0+1]=0.1

k2=hf(x0+h2,y0+k12)=0.1f(0.05,1+0.12)=0.1f(0.05,1.05)

=0.1[2(0.05)+1.05]=0.115

k3=hf(x0+h,y0+2k2k1)

=0.1f(0.1,1+0.230.1)

=0.1 f(0.1,1.13)

=0.1[2(0.1)+1.13]=0.133

y(0.1)=1+16[(0.1)+4(0.115)+0.133]=1.1155

Runge Kutta Method Question 3:

Consider the Differential Equation  dydx=(x+y)ex,y(0)=1 by Runge- Kutta second order method with step size 0.1, the value of y(0.2) is

  1. 1.16310

  2. 1.27211

  3. 0.32725

  4. 1.52083

Answer (Detailed Solution Below)

Option 2 :

1.27211

Runge Kutta Method Question 3 Detailed Solution

dydx=(x+y)ex=f(x,y)

given that

x0=0,y0=1,h=0.1

i) k1=hf(x0,y0)=h[(x0+y0)ex0]

=0.1[(0+1)e0]=0.1

ii) k2=hf(x0+h,y0+k1)=h[(x0+h,y0+k1)ex0+h]

=0.1[(0+0.1+1+0.1)e(0+0.1)]=0.13262

then k=k1+k22=0.13262+0.12=0.11631

so y1=yo+ky(0.1)=1+.11631

y(0.1)=1.11631

IInd approximation

x1=x0+h=0.1,y1=1.11631,h=0.1

i) k1=hf(x1+y1)=0.1[(0.1+1.11631)e0.1]=0.134423

ii) k2=hf(x1+h1+y1+k1)=0.1[(0.1+0.1+1.11631+0.1344230)e(0.1+0.1)]

=0.177192

k=k1+k22=.134423+0.1771922=0.155807

y2=y1+ky(0.2)=1.11631+0.155807y(0.2)=1.272117

Runge Kutta Method Question 4:

Consider the DE dydx=(x+y)ex,y(0)=1 by runge- katta 2nd order method with step size 0.1, the value of y(0.2) is

  1. 0.116310

  2. 0.149035

  3. 0.032725

  4. 0.152083

Answer (Detailed Solution Below)

Option 2 :

0.149035

Runge Kutta Method Question 4 Detailed Solution

dydx=(x+y)ex

given that

x0=0,y0=1,h=0.1

i) k1=hf(x0,y0)=h[(x0+y0)ex0]

=0.1[(0+1)e0]=0.1

ii) k2=hf(x0+h,y0+k1)=h[(x0+h,y0+k1)ex0+h]

=0.1[(0+0.1+1+0.1)e(0+0.1)]=0.13262

then k=k1+k22=0.13262+0.12=0.11631

so y1=yo+ky(0.1)=0+.11631=0.11631

IInd approximation

x1 = 0.1, h = 0.1, y1 = 0.11631

i) k1=hf(x1+y1)=0.1[(0.1+0.11631)e0.1]=0.02390

ii) k2=hf(x1+h,y1+k1)=0.1[(0.1+0.1+.11631+.02390)e0.1+0.1]

= 0.04155

k=k1+k22=.02390+0.041552=.032725

y2=y1+ky(0.2)=.11631+.032725y(0.2)=.149035

Runge Kutta Method Question 5:

dy/dx=xy, with y(0)=0,h=0.1, find y(0.1) using second order Runge-Kutta Method

Answer (Detailed Solution Below) 0.005

Runge Kutta Method Question 5 Detailed Solution

y1=y0+12(k1+k2)k1=hf(x0,y0)=0.1(00)=0k2=hf(x0+h,y0+k1)=0.1(0.10)=0.01y1=0+12(0+0.01)=0.005

Get Free Access Now
Hot Links: teen patti app mpl teen patti teen patti star apk teen patti 51 bonus