Limits MCQ Quiz in తెలుగు - Objective Question with Answer for Limits - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 10, 2025

పొందండి Limits సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Limits MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Limits MCQ Objective Questions

Top Limits MCQ Objective Questions

Limits Question 1:

Consider the sequence xn = 0.5xn−1 + 1, n = 1, 2, ... ... with x0 = 0. Then \(\mathop {\lim }\limits_{n \to \infty } {x_n}\)

  1. 0
  2. 1
  3. 2

Answer (Detailed Solution Below)

Option 3 : 2

Limits Question 1 Detailed Solution

Concept:

Limit:

The number L is called the limit of function f(x) as x→a if and only if, for every ε > 0 there exists δ > 0 such that:

|f(x) - L| < ϵ 

Whenever 0 < |x - a| < δ 

Calculation:

Given that:

x= 0.5xn−1 + 1 

\(x_n = \frac{x_{n-1}}{2}+1\)

x1 = 1 (x0 = 0 given)

\(x_2 = \frac{x_1}{2} + 1 = \frac{1}{2} + 1 = \frac{3}{2}\)

\(x_3 = \frac{x_2}{2} + 1 = \frac{3}{2 \times 2} + 1 = \frac{7}{4}\)

\(x_4 = \frac{x_3}{2} + 1 = \frac{7}{4 \times 2} + 1 = \frac{15}{8}\)

\(x_5 = \frac{x_4}{2} + 1 = \frac{15}{8 \times 2} + 1 = \frac{31}{16}\)

The sequence is:

\(= 1, \frac{3}{2}, \frac{7}{2^2}, \frac{15}{2^3}, \frac{31}{2^4}, .. , \frac{2^n -1}{2^{n-1}},..\)

\(\mathop {\lim }\limits_{n \to \infty } {x_n} = \mathop {\lim }\limits_{n \to \infty } \frac{{{2^n} - 1}}{{{2^{n - 1}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{2^n} - 1}}{{{2^n}}}2\)

\(\mathop {\lim }\limits_{n \to \infty } {x_n} = \mathop {\lim }\limits_{n \to \infty } 2\left( {1 - \frac{1}{{{2^n}}}} \right) = 2\)

Limits Question 2:

The limit

\(\rm p = \displaystyle\lim_{x \rightarrow \pi} \left( \frac{x^2 + α x + 2 \pi^2}{x - \pi + 2 \sin x} \right)\)

has a finite value for a real α. The value of α and the corresponding limit p are

  1. α = -3π, and p = π
  2. α = -2π, and p = 2π
  3. α = π, and p = π
  4. α = 2π, and p = 3π

Answer (Detailed Solution Below)

Option 1 : α = -3π, and p = π

Limits Question 2 Detailed Solution

Explanation:

\(\rm p = \displaystyle\lim_{x \rightarrow π} \left( \frac{x^2 + α x + 2 π^2}{x - π + 2 \sin x} \right)\)

substitue x = π

\(\rm p = \left( \frac{π^2 + α π + 2 π^2}{π - π + 2 \sin π} \right )\), sin π = 0

We can see that denominator becomes zero.

Thus for p to have finite value numerator is also zero.

π2 + απ + 2π2 = 0

α = - 3π

Now,  \(\rm p = \left( \frac{\pi ^2 + α π + 2 π^2}{\pi - π + 2 \sin \pi} \right ) = \frac{0}{0} \)form

Using L'Hospital's rule, we get

\(\rm p = \displaystyle\lim_{x \rightarrow π} \left( \frac{2x\ +\ α }{1\ +\ 2 \cos x} \right ) \)

substituting x = πα = - 3π

\(\rm p = \left( \frac{2π\ -\ 3π }{1\ +\ 2 \cos π} \right ) \), cosπ = -1

p = \(\frac{-π}{-1}\)

p = π 

Limits Question 3:

The value of \(\mathop {\lim }\limits_{x \to \infty } \frac{{x {\:}ln\left( x \right)}}{{1 + {x^2}}}\) is:

  1. 0
  2. 1.0
  3. 0.5

Answer (Detailed Solution Below)

Option 1 : 0

Limits Question 3 Detailed Solution

Concept:

L’ Hospital’s Rule:

\(\mathop {\lim }\limits_{x \to a} \left\{ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \mathop {\lim }\limits_{x \to a} \left\{ {\frac{{f'\left( x \right)}}{{g'\left( x \right)}}} \right\}\)

This rule is only applicable for \(\frac{0}{0}\) and \(\frac{\infty }{\infty }\) indeterminate forms.

Calculation

As 

\(\mathop {\lim }\limits_{x \to \infty } \frac{{xln\;x}}{{1 + {x^2}}} = \frac{\infty }{\infty }\)

Which is an indeterminate form.

Using L hospitality rule for \(\mathop {\lim }\limits_{x \to \infty } \frac{{xln\;x}}{{1 + {x^2}}}\)

We get

\(\mathop {\lim }\limits_{x \to \infty } \frac{{x \times \frac{1}{x} + lnx}}{{2x}} = \mathop {\lim }\limits_{x \to \infty } \frac{{1 + lnx}}{{2x}} = \frac{\infty }{\infty }\;Indeterminate\;form\)

Again applying the L hospitality rule, we get 

\(\mathop {\lim }\limits_{x \to \infty } \frac{{\frac{1}{x}}}{2} = \frac{{\frac{1}{\infty }}}{2} = 0\)

∴ Value of 

\(\mathop {\lim }\limits_{x \to \infty } \frac{{xln\;x}}{{1 + {x^2}}} = 0\)

Limits Question 4:

limx→∞ x1/x is

  1. 0
  2. 1
  3. Not defined

Answer (Detailed Solution Below)

Option 3 : 1

Limits Question 4 Detailed Solution

\(let\;y = {x^{\frac{1}{x}}}\)

Taking loge on both sides

\({\log _{\rm{e}}}{\rm{y}} = \frac{1}{{\rm{x}}}{\log _{\rm{e}}}{\rm{x}}\)

\({\rm{Taking\;}}\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to \infty } {\rm{\;on\;both\;sides\;}}\)

\(\mathop {{\rm{lim}}}\limits_{x \to \infty } {\log _{\rm{e}}}{\rm{y}} = \mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{1}{{\rm{x}}}{\log _{\rm{e}}}{\rm{x}}\)

Substituting x = ∞

It is of the form \(\frac{\infty}{\infty}\) 

Differentiating w.r.t x

\(\mathop {{\rm{lim}}}\limits_{x \to \infty } {\log _{\rm{e}}}{\rm{y}} = \mathop {{\rm{lim}}}\limits_{x \to \infty } \frac{1}{{\rm{x}}}\)

Substituting x = ∞

\({\log _{\rm{e}}}{\rm{y}} = 0\;\;\;\;\;\;\;\left( {\frac{1}{\infty } = 0} \right)\)

∴ y = e0

∴ y = 1

Limits Question 5:

\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \left( {1 + x + \frac{{{x^2}}}{2}} \right)}}{{{x^3}}} =\)

  1. 0
  2. \(\frac{1}{6}\)
  3. \(\frac{1}{3}\)
  4. 1

Answer (Detailed Solution Below)

Option 2 : \(\frac{1}{6}\)

Limits Question 5 Detailed Solution

\(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - \left( {1 + x + \frac{{{x^2}}}{2}} \right)}}{{{x^3}}} = \frac{0}{0}\)Not defined 

Using L – Hospital’s rule,

1st derivation

\(\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{\frac{d}{{dx}}\left[ {{e^x} - \left( {1 + x + \frac{{{x^2}}}{2}} \right)} \right]}}{{\frac{d}{{dx}}\left( {{x^3}} \right)}} = {\lim _{{\rm{x}} \to 0}}\frac{{{e^x} - \left( {0 + 1 + \frac{{2x}}{2}} \right)}}{{3{x^2}}} = \frac{{1 - \left( {0 + 1 + 0} \right)}}{0} = \frac{0}{0}\)Not defined

2nd derivation

\(\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{{{\rm{e}}^{\rm{x}}} - \left( {0 + 0 + 1} \right)}}{{6{\rm{x}}}} = \frac{0}{0}\)Not defined

3rd derivation

\(\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{{e^x} - 0}}{6} = \frac{1}{6}\)

Limits Question 6:

The value of \(\displaystyle\lim_{x \rightarrow 0} \left(\frac{1 - \cos x}{x^2}\right)\) is

  1. \(\frac{1}{4}\)
  2. 1
  3. \(\frac{1}{3}\)
  4. \(\frac{1}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{1}{2}\)

Limits Question 6 Detailed Solution

Concept: 

L-Hospital Rule: Let f(x) and g(x) be two functions

Suppose that we have one of the following cases,

I.  \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = \frac{0}{0}\)

II. \(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = \frac{\infty }{\infty }\)

Then we can apply L-Hospital Rule as:

\(\mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}\left( {\bf{x}} \right)}}{{{\bf{g}}\left( {\bf{x}} \right)}} = \mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}'\left( {\bf{x}} \right)}}{{{\bf{g}}'\left( {\bf{x}} \right)}}\)

Calculation:

Given

\(\displaystyle\lim_{x \rightarrow 0} \left(\dfrac{1 - \cos x}{x^2}\right) = \left( {\frac{0}{0}} \right)\)

Applying L’ Hospital  rule:

\(\displaystyle\lim_{x \rightarrow 0} \left(\dfrac{1 - \cos x}{x^2}\right) =\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{\frac{d}{dx}({1 - \cos x})}{{\frac{d}{dx}(x^2})} =\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{sin\;x {\rm{}}}}{{ {2x\rm}}} \)

\(\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{sin\;x {\rm{}}}}{{ {2x\rm}}} = \left( {\frac{0}{0}} \right){\rm{form}}\)

Once again by L’ Hospital rule,

\({\rm{}}\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{cos\; {\rm{x}}}}{{{\rm{2}}}} = \frac{1}{2}\)

Limits Question 7:

Evaluate the limit \(\begin{array}{*{20}{c}} {lim}\\ {x \to 0} \end{array}\frac{{\sin \left( {\pi {{\cos }^2}x} \right)}}{{{x^2}}}\)

Answer (Detailed Solution Below) 3.13 - 3.15

Limits Question 7 Detailed Solution

Concept:

\(\begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin x}}{x} = 1\)

Calculation:

Given:

\(\begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin \left( {\pi {{\cos }^2}x} \right)}}{{{x^2}}}\)

cos2 x = 1 – sin2 x

\(\begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin \left( {\pi {{\cos }^2}x} \right)}}{{{x^2}}} = \begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin \left\{ {\pi \left( {1 - {{\sin }^2}x} \right)} \right\}}}{{{x^2}}}\)

\(= \begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin \left( {\pi - \pi \;si{n^2}x} \right)}}{{{x^2}}}\)

\(= \begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin \left( {\pi si{n^2}x} \right)}}{{{x^2}}}\)

Multiply and divide by π sin2x

\( = \begin{array}{*{20}{c}} {\lim}\\ {x \to 0} \end{array}\frac{{\sin \left( {\pi si{n^2}x} \right)}}{{\pi {{\sin }^2}x}} \times \frac{{\pi {{\sin }^2}x}}{{{x^2}}}\)

\(Since~lim_{x\rightarrow 0}\frac{sinx}{x}=1\), the above expression gives:

= π = 3.14

Limits Question 8:

Consider the limit:

\(\mathop {\lim }\limits_{x \to 1} (\frac{1}{1n x}-\frac{1}{x-1})\) The limit (correct up to one decimal place) is ______.

Answer (Detailed Solution Below) 0.5

Limits Question 8 Detailed Solution

Concept:

L’ Hospital’s Rule:

\(\mathop {\lim }\limits_{x \to a} \left\{ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \mathop {\lim }\limits_{x \to a} \left\{ {\frac{{f'\left( x \right)}}{{g'\left( x \right)}}} \right\}\)

This rule is only applicable for \(\frac{0}{0}\) and \(\frac{\infty }{\infty }\) indeterminate forms.

Explanation:

\(\mathop {\lim }\limits_{x \to 1} (\frac{1}{1n x}-\frac{1}{x-1})\)

\(\mathop {\lim }\limits_{x \to 1} \left[ {\frac{{\left( {x - 1} \right) - \ln x}}{{\ln x\;\left( {x - 1} \right)}}} \right]\) which is in the form of 0/0

So, applying L- Hospital rule twice,

\(\mathop {\lim }\limits_{x \to 1} \left[ {\frac{{1 - \frac{1}{x}}}{{\log x + \left( {x - 1} \right)\left( {\frac{1}{x}} \right)}}} \right] \)

then,

\(\mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{{{x^2}}}}}{{\frac{1}{{{x^2}}} + \frac{1}{x}}}\)

\(\frac{1}{{1 + 1}} = \frac{1}{2} = 0.5\)

Limits Question 9:

If \(\mathop {\lim }\limits_{x \to \infty } \left( {ax + \left( {\frac{{7 - \sqrt 3 {x^2}}}{{3 - x}}} \right)} \right) = b,\) a finite number, then the values of a and b are:

  1. a = -√3, b = 3√3
  2. a = 3, b = √3
  3. a = 2√3, b = -3
  4. a = -2√3, b = 2√3

Answer (Detailed Solution Below)

Option 1 : a = -√3, b = 3√3

Limits Question 9 Detailed Solution

\(\mathop {\lim }\limits_{x \to \infty } \left( {ax + \left( {\frac{{7 - \sqrt 3 {x^2}}}{{3 - x}}} \right)} \right) = b\;\)

\(ax + \frac{{7 - \sqrt 3 {x^2}}}{{3 - x}}\)

\( = \frac{{ax\left( {3 - x} \right) + 7 - \sqrt 3 \;{x^2}}}{{3 - x}}\)

\( = \frac{{3ax - a{x^2} + 7 - \sqrt 3 \;{x^2}}}{{3 - x}}\)

\( = \frac{{ - \sqrt 3 \;{x^2} - a{x^2} + 3ax + 7}}{{3 - x}}\)

\(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}\left( { - \sqrt 3 - a} \right) + x\left( {3a + \frac{7}{x}} \right)}}{{x\left( {\frac{3}{x} - 1} \right)}}\)

∴ For the limit to be finite, the x2 term in the numerator should be 0.
\(\therefore \; - \sqrt 3 - a = 0\)

\(a = - \sqrt 3 \)

Now,

\(\mathop {\lim }\limits_{x \to \infty } \frac{{x\left( { - 3\sqrt 3 + \frac{7}{x}} \right)}}{{x\left( {\frac{3}{x} - 1} \right)}}\)

\( = \frac{{ - 3\sqrt 3 }}{{ - 1}} = 3\sqrt 3 \)

Limits Question 10:

Consider the function \(f\left( x \right) = \frac{{\left| x \right|}}{x}:\)

a) \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1\)

b) \(\mathop {\lim }\limits_{x \to {0^{ -}}} f\left( x \right) = - 1\)

c) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) does not exists

  1. All (a), (b) and (c) are true
  2. Both (a) and (b) are false
  3. (c) alone true
  4. (a) and (c) are true

Answer (Detailed Solution Below)

Option 1 : All (a), (b) and (c) are true

Limits Question 10 Detailed Solution

Concept:

A function f(x) is said to be continuous at a point x = a, in its domain if,

\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{a}} \right)\) exists or its graph is a single unbroken curve.

f(x) is Continuous at x = a

\(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{a}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\)

Calculation:

Given:

\(f\left( x \right) = \frac{{\left| x \right|}}{x}\)

\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right|}}{x} = 1\)

\(for\;x \to {0^ + },\;\left| x \right| = x\)

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \;\mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right|}}{x} = \frac{{\left| { - x} \right|}}{{ - x}} = \frac{x}{{ - x}} = \; - 1\)

\(\)Left hand limit and right hand limit are not equal 

∴ \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\;\)does not exist.

All given options are true.

Get Free Access Now
Hot Links: all teen patti game teen patti winner teen patti flush