Evaluate using Integration by Parts MCQ Quiz in తెలుగు - Objective Question with Answer for Evaluate using Integration by Parts - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Apr 1, 2025

పొందండి Evaluate using Integration by Parts సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Evaluate using Integration by Parts MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Evaluate using Integration by Parts MCQ Objective Questions

Top Evaluate using Integration by Parts MCQ Objective Questions

Evaluate using Integration by Parts Question 1:

Answer (Detailed Solution Below)

Option 2 :

Evaluate using Integration by Parts Question 1 Detailed Solution

Evaluate using Integration by Parts Question 2:

What is the value of ?

  1. e2 - 1
  2. 2(e - 1)
  3. More than one of the above
  4. None of the above

Answer (Detailed Solution Below)

Option 1 :

Evaluate using Integration by Parts Question 2 Detailed Solution

Calculation:

Given that,

 dx

Putting x2 = t

differentiating w.r.t "t" we get,

⇒ 2x dx = dt ⇒ x dx = 

x = 0, t = 0, x = 1, t = 1

Now, 

The correct answer is option "1'

Evaluate using Integration by Parts Question 3:

Answer (Detailed Solution Below)

Option 4 :

Evaluate using Integration by Parts Question 3 Detailed Solution

Explanation:

Concept: Integration by part

If f and g are two functions, then ∫fg = f∫g - ∫{f'∫g}

If ∫ f(x)dx = F(x), then f(x) = F(b)-F(a)

Let 

We have f = x3 and g = sinx

∴ 

⇒ 

On applying limits of integration,

∴ I = (3(π /2)- 6)
⇒ 

Evaluate using Integration by Parts Question 4:

Let , where n ∈ N. If (20)I10 = αI9 + βI8, for natural numbers α and β, then α - β equals to _________.

Answer (Detailed Solution Below) 1

Evaluate using Integration by Parts Question 4 Detailed Solution

Concept:

Integration By Parts of Definite Integrals formula: 

Calculation:

Given:

Here, u= , v = 

So apply by Parts:

 --------(Since u' = )

 -------( Since )

Put the limits we get,

Now,

 ---(1)

 ----(2)

Subtract (1) from (2)

(20)I10 = 10I9 + 9I8

Comparing with (20)I10 = αI9 + βI8

we get

α = 10 and β = 9

So  α - β = 1

Hot Links: teen patti customer care number lucky teen patti teen patti octro 3 patti rummy