Exponential Function MCQ Quiz in தமிழ் - Objective Question with Answer for Exponential Function - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Apr 7, 2025

பெறு Exponential Function பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Exponential Function MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Exponential Function MCQ Objective Questions

Top Exponential Function MCQ Objective Questions

Exponential Function Question 1:

Comprehension:

Consider the following for the next items that follow:

Let f(x) = |x| and g(x) = [x] - 1, where [.] is the greatest integer function.

Let h(x)=f(g(x))g(f(x)).

What is limx0 h(x) equal to ?

  1. -2
  2. -1
  3. 0
  4. 2

Answer (Detailed Solution Below)

Option 1 : -2

Exponential Function Question 1 Detailed Solution

Concept:

Greatest Integer Function:

Greatest Integer Function [x] indicates an integral part of the real number x which is the nearest and smaller integer to x. It is also known as the floor of x

  • In general, If n≤ x ≤ n+1 Then [x] = n     (n ∈ Integer)
  • This means if x lies in [n, n+1) then the Greatest Integer Function of x will be n.

 

Calculation:

Let

f(x) = |x| and g(x) = [x] - 1, where [.] is the greatest integer function.

h(x)=f(g(x))g(f(x)).

h(x)=|[x]1|[|x|]1

limx0|[x]1|[|x|]1

For a number lesser than 0, Let us say x = - 0.1, so the greatest integer [x] = -1

limx0|11|[x]1

limx0|2|[x]1

|-2| = 2, For a number lesser than 0, Let us say x = - 0.1, so the greatest integer [-x] = 0

201

limx0|2|[x]1=2

Exponential Function Question 2:

If x3n+y3n is divisible by x + y, then

  1. n ≥ 0, integer
  2. n is only positive even integer
  3. n is only odd integer
  4. n is only positive odd integer

Answer (Detailed Solution Below)

Option 1 : n ≥ 0, integer

Exponential Function Question 2 Detailed Solution

Explanation:

It is given that p(n)=x3n+y3n is divisible by x + y.

Let us put n = 0, we get

p(0)=x30+y30

⇒ p(0) = x + y      (∵ a0 = 1)

⇒ p(0) is divisible by x + y

Now, let's put n = 1, we get

p(1) = x3 + y3 

⇒ p(1) = (x + y)(x2 + y2 - xy)      [∵ x3 + y3 = (x + y)(x2 + y2 - xy)]

⇒ p(1) is divisible by x + y

Now, let's put n = 2, 

p(2)=x32+y32

⇒ p(2) = x9 + y9 

⇒ p(2) = (x3 + y3)(x6 + y6 - x3y3)

⇒ p(2) is divisible by x + y

Thus, we can say that p(n) is divisible by x + y for all values of n ≥ 0, where n is an integer. 

Exponential Function Question 3:

Comprehension:

Consider the following for the items that follow :

Let f(x) = |x| + 1 and g(x) = [x] - 1, where [.] is the greatest integer function.

Let h(x)=f(x)g(x)

What is limx0h(x)+limx0+h(x) equal to ?

  1. 32
  2. 12
  3. 12
  4. 32

Answer (Detailed Solution Below)

Option 1 : 32

Exponential Function Question 3 Detailed Solution

Given -

Let f(x) = |x| + 1 and g(x) = [x] - 1, h(x)=f(x)g(x)

where [.] is the greatest integer function.

Let h(x)=f(x)g(x)

Explanation -

Step 1: Evaluate limx0h(x)

For x → 0- (approaching 0 from the left):

f(x) = |x| + 1 = -x + 1 (since x < 0 )

g(x) = [x] - 1 = -1 - 1 = -2 (since [x] = -1 when -1 < x < 0 )

Thus, 

h(x) = f(x)g(x)=x+12=x12

As x → 0- :

limx0h(x)=012=12

Step 2: Evaluate limx0+h(x)

For x → 0+ (approaching 0 from the right):

f(x) = |x| + 1 = x + 1 (since x > 0 )

g(x) = [x] - 1 = -1 (since [x] = 0 when 0 ≤ x < 1 )

Thus,

h(x) = f(x)g(x)=x+11=(x+1)

As x → 0+ :

limx0+h(x)=(0+1)=1

Step 3: Sum of the limits

Now, sum the left-hand limit and the right-hand limit:

limx0h(x)+limx0+h(x)=12+(1)=121=32

So, the answer is -3/2.

Exponential Function Question 4:

Comprehension:

Consider the following for the items that follow :

Let f(x) = |x| + 1 and g(x) = [x] - 1, where [.] is the greatest integer function.

Let h(x)=f(x)g(x)

Consider the following statements :

1. f(x) is differentiable for all x < 0

2. g(x) is continuous at x = 0.0001

3. The derivative of g(x) at x = 2.5 is 1

Which of the statements given above are correct?

  1. 1 and 2 only
  2. 2 and 3 only
  3. 1 and 3 only
  4. 1, 2 and 3

Answer (Detailed Solution Below)

Option 1 : 1 and 2 only

Exponential Function Question 4 Detailed Solution

Given -

Let f(x) = |x| + 1 and g(x) = [x] - 1, h(x)=f(x)g(x)

where [.] is the greatest integer function.

Let h(x)=f(x)g(x)

Explanation -

Statement 1: f(x) is differentiable for all x < 0 .

The function f(x) = |x| + 1 can be written as:

f(x)=x+1forx<0

The function -x + 1 is differentiable for all x < 0 because it is a linear function.

Therefore, Statement 1 is correct.

Statement 2: g(x) is continuous at x = 0.0001 .

The function g(x) = [x] - 1 :

For 0x<1, [x] = 0

Therefore, g(x) =[x] - 1 = 0 - 1 = -1

At x = 0.0001 , which is in the interval 0 ≤ x < 1 :

⇒ g(0.0001) = -1

Since the greatest integer function is not continuous at integer points, but 0.0001 is not an integer, g(x) does not have any discontinuity at x = 0.0001 .

Therefore, Statement 2 is correct.

Statement 3: The derivative of g(x) at x = 2.5 is 1.

The function g(x) =[x] - 1 is a piecewise constant function, which means its derivative is zero almost everywhere.

For 2 ≤ x < 3 , [x] = 2

Therefore, g(x) = 2 - 1 = 1

Since g(x) is constant in the interval 2 ≤ x < 3 , its derivative is 0 in this interval.

Thus, Statement 3 is incorrect.

Hence Option (1) is Correct.

Exponential Function Question 5:

Which of the following has the highest value?

  1. 152
  2. 64
  3. 27
  4. 35

Answer (Detailed Solution Below)

Option 2 : 64

Exponential Function Question 5 Detailed Solution

The correct answer is 64

Key Points

  • As the above Question:  
    • 15= 15*15 = 225
    • 6= 6*6*6*= 1296
    • 2= 2*2*2*2*2*2*2 = 128
    • 35 = 3*3*3*3*3 = 243

So, 64 has the highest value. 

Exponential Function Question 6:

Comprehension:

​Directions: Read the following information and answer the two items that follow:

Consider the equation

y = ex log x

What is d2ydx2 at x = 1 equal to?

  1. 0
  2. log 2
  3. 2 log 2
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Exponential Function Question 6 Detailed Solution

Concept:

d(uv)dx=u×dvdx+v×dudx

Calculation:

Given: y = ex log x

By applying log both the sides we get

⇒ log y = log (e)x log x

⇒ log y = x log x log e             [log xa = a log x]

⇒ log y = x log x      ------(i)      [log e = 1]

Differentiating both sides with respect to x, using product rule d(uv)dx=u×dvdx+v×dudx, we get,

⇒ d(log y)dx=x×d(log x)dx+log x×dxdx

⇒ 1ydydx=x×1xdxdx+log x

⇒ 1ydydx=1+log x

 dydx=y[1+log x] 

Differentiating both sides with respect to x, using product rule d(uv)dx=u×dvdx+v×dudx, we get,

d2ydx2=[y.1x.dxdx+(1+log x)dydx]

⇒ d2ydx2=[yx+(1+log x)dydx]

⇒ d2ydx2=[xxx+(1+log x) xx(1+log x)].....(here, dydx=xx(1+logx))

⇒ d2ydx2=xx(1+log x)[1x(1+log x)+(1+log x)]

Now, d2ydx2 at x = 1 = 2.

∴ d2ydx2 at x = 1 equal to 2.

Exponential Function Question 7:

limx0ex1xx2x2 =

  1. 0
  2. 12
  3. 12
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 12

Exponential Function Question 7 Detailed Solution

Given:

The given limiting function is as follows,

limx0ex1xx2x2 

Concept:

Use the L'hospital rule for the limit limxaf(x)g(x) of the form 00

limxaf(x)g(x)=limxaf(x)g(x)

Where,

f'(x) and g'(x) are the derivative of f(x) and g(x).

Solution:

The given limit is as follows,

limx0ex1xx2x2 

limx0ex1xx2x2=00

Derivating f(x) and g(x) we will get,

limx0ex12x2x=00

Still, it is of 00 form.

Derivating again we will get,

limx0ex22=122=12

Hence, option 3 is correct.

Exponential Function Question 8:

What is limx0axbxx?

  1. log(ab)
  2. log(ba)
  3. ab
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : log(ab)

Exponential Function Question 8 Detailed Solution

Calculation:

Given that,

limx0axbxx,   form (00)

Using L' Hospital rule then

limx0axlogabxlogb1

Applying limit, we get -

limx0axbxx=a0,logab0logb1 = log a − log b

= log (ab)

The correct answer is option "1"

Exponential Function Question 9:

Comprehension:

Consider the following for the next items that follow:

Let f(x) = [x] - 1 and g(x) = x|x|, where [.] is the greatest integer function.

Let h(x)=g(f(x))f(g(x)).

What is limx0+ h(x) equal to ?

  1. - 1
  2. - 2
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Exponential Function Question 9 Detailed Solution

Given:

Let f(x) = [x] - 1 and g(x) = x|x|, where [.] is the greatest integer function.

Calculation:

h(x)=g(f(x))f(g(x)).

limx0+h(x)=limx0+([x]1)(|[x]1|)[x|x|]1

For x > 0, |x| = x,

limx0+h(x)=limx0+([x]1)(|[x]1|)[x2]1

For a number greater than 0, Let us say x = 0.1, so the greatest integer [x] = 0

For a number greater than 0, Let us say x2 = 0.01, so the greatest integer [x] = 0

(01)(|01|)1

As, |-1| = 1, 

(1)(1)1 = 1

∴ The correct answer is 1, i.e. option (3).

Exponential Function Question 10:

The constant r > 0 in the exponential growth function - p(t)= p0ert-

  1. growth rate
  2. phase line 
  3. carrying capacity
  4. threshold population

Answer (Detailed Solution Below)

Option 1 : growth rate

Exponential Function Question 10 Detailed Solution

Solution- 

The constant r > 0 in the exponential growth function - p(t)= p0ert 

where , r is growth rate . 

Therefore, Correct answer is Option 1).

Get Free Access Now
Hot Links: teen patti master new version teen patti list teen patti master purana teen patti master downloadable content