Scalar Triple Product MCQ Quiz in मल्याळम - Objective Question with Answer for Scalar Triple Product - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 23, 2025

നേടുക Scalar Triple Product ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Scalar Triple Product MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Scalar Triple Product MCQ Objective Questions

Top Scalar Triple Product MCQ Objective Questions

Scalar Triple Product Question 1:

Let a, b, and c be distinct non-negative numbers. If the vectors \(a\hat i + a\hat j +c\hat k\)\(\hat i +\hat k\) and \(c \hat i +c \hat j + b \hat k\) lie in a plane c is,

  1. The arithmetic mean of a and b
  2. The geometric mean of and b
  3. The harmonic mean of a and b
  4. Equal to zero

Answer (Detailed Solution Below)

Option 2 : The geometric mean of and b

Scalar Triple Product Question 1 Detailed Solution

Concept:

Scaler triple product of the vectors:

The scalar triple product of the vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) is given by:

\({\rm{\bar A}} \cdot \left[ {{\rm{\bar B}} \times {\rm{\bar C}}} \right] = {\rm{\;}}\left| {\begin{array}{*{20}{c}} {{{\rm{x}}_1}}&{{{\rm{y}}_1}}&{{{\rm{z}}_1}}\\ {{{\rm{x}}_2}}&{{{\rm{y}}_2}}&{{{\rm{z}}_2}}\\ {{{\rm{x}}_3}}&{{{\rm{y}}_3}}&{{{\rm{z}}_3}} \end{array}} \right|\)

Coplanar vectors:

Three vectors \({\rm{\bar A}} = {{\rm{x}}_1}\hat i + \;{y_1}\hat j + {\rm{\;}}{{\rm{z}}_1}\hat k,\;\bar B = \;{x_2}\hat i + \;{y_2}\hat j + {z_2}\hat k\) and \({\rm{\bar C}} = {\rm{\;}}{{\rm{x}}_3}\hat i + \;{y_3}\hat j + {\rm{\;}}{{\rm{z}}_3}\hat k\) are said to be coplanar if the scalar triple product \({\bf{\bar A}} \cdot \left[ {{\bf{\bar B}} \times {\bf{\bar C}}} \right] = 0.\)

Calculation:

\(\left| {\begin{array}{*{20}{c}} a&a&c\\ 1&0&1\\ c&c&b \end{array}} \right| = 0 \)       

⇒ a(-c) - a(b-c) + c(c) = 0 

⇒ c= ab

Hence c is the geometric mean of a and b.

Scalar Triple Product Question 2:

Find the scalar triple product of the vectors \(\vec a = 2\hat i + 3\hat j + 4\hat k\;,\;\vec b = 3\hat i + 4\hat j + 6\hat k\;and\;\vec c = 2\hat i + 4\hat j + \hat k\)

  1. 2
  2. 3
  3. 4
  4. 5
  5. 6

Answer (Detailed Solution Below)

Option 2 : 3

Scalar Triple Product Question 2 Detailed Solution

Concept:

Scalar Triple Product: 

If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\)\(\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) and \(\vec c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\) then their scalar triple product is defined as \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

Calculation:

Given: \(\vec a = 2\hat i + 3\hat j + 4\hat k\;,\;\vec b = 3\hat i + 4\hat j + 6\hat k\;and\;\vec c = 2\hat i + 4\hat j + \hat k\)

As we know that, the scalar triple product of three vectors is \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{2}}&{{3}}&{{4}}\\ {{3}}&{{4}}&{{6}}\\ {{2}}&{{4}}&{{1}} \end{array}} \right|\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = 2 \times (4 - 24) - 3 \times (3 - 12) + 4 \times (12 - 8) = 3\)

Hence, the correct option is 2.

Scalar Triple Product Question 3:

Find the scalar triplet product of the vectors \(\vec a = \hat i + \hat j + \hat k\;,\;\vec b = 7\hat i + 2\hat j + 3\hat k\;and\;\vec c = \hat i + \hat j + \hat k\)

  1. 1
  2. 2
  3. 4
  4. 0

Answer (Detailed Solution Below)

Option 4 : 0

Scalar Triple Product Question 3 Detailed Solution

Concept:

Scalar Triple Product: 

If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\)\(\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) and \(\vec c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\) then their scalar triple product is defined as \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

Calculation:

Given: \(\vec a = \hat i + \hat j + \hat k\;,\;\vec b = 7\hat i + 2\hat j + 3\hat k\;and\;\vec c = \hat i + \hat j + \hat k\)

As we know that, the scalar triple product of three vectors is \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{1}}&{{1}}&{{1}}\\ {{7}}&{{2}}&{{3}}\\ {{1}}&{{1}}&{{1}} \end{array}} \right|\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = 1 \times (2 - 3) - 1 \times (7 - 3) + 1 \times (7 - 2) = 0\)

Hence, the correct option is 4.

Scalar Triple Product Question 4:

If  \(\rm \vec{a}, \vec b \ and \ \vec c\) are three non-zero vectors then which of the following option is correct ?

  1. \(\rm \rm \vec{a}.( \vec{b}\times \vec {c}) \neq \vec{b}.( \vec{c}\times \vec{a})\)
  2. \(\rm \rm \vec{a}.( \vec{b}\times \vec {c}) \neq\vec{a}.( \vec{c}\times \vec{b}) \)
  3. \(\rm \rm \vec{a}.( \vec{b}\times \vec {c}) \neq \vec{c}.( \vec{a}\times \vec{b})\)
  4. None of these

Answer (Detailed Solution Below)

Option 2 : \(\rm \rm \vec{a}.( \vec{b}\times \vec {c}) \neq\vec{a}.( \vec{c}\times \vec{b}) \)

Scalar Triple Product Question 4 Detailed Solution

Concept:

If \(\rm \vec{a}=a_{1}\hat i+a_{2}\hat j+a_{3}\hat k\)\(\rm \vec{b}=b_{1}\vec i+b_{2}\vec j+b_{3}\vec k\) and \(\rm \vec{c}=c_{1}\vec i+c_{2}\vec j+c_{3}\vec k\), then \(\rm \vec{a}.( \vec{b}\times \vec{c})= \begin{vmatrix} a_{1} &a_{2} &a_{3}\\ b_{1} & b_{2} &b_{3} \\ c_{1} & c_{2} &c_{3} \end{vmatrix}\).

Note\(\rm \vec{a}.( \vec{b}\times \vec{c})=\vec{b}.( \vec{c}\times \vec{a})=\vec{c}.( \vec{a}\times \vec{b})\)

Calculation:

Let  \(\rm \vec{a}=a_{1}i+a_{2}j+a_{3}k\)\(\rm \vec{b}=b_{1}i+b_{2}j+b_{3}k\) and \(\rm \vec{c}=c_{1}i+c_{2}j+c_{3}k\),

As we know that, if \(\rm \vec{a}.( \vec{b}\times \vec{c})=\vec{b}.( \vec{c}\times \vec{a})=\vec{c}.( \vec{a}\times \vec{b})\)

Hence, option 2 is correct.

Scalar Triple Product Question 5:

Find the scalar triple product of the vectors \(\vec a = \hat i + 3\hat j + 4\hat k\;,\;\vec b = 3\hat i + 4\hat j + 2\hat k\;and\;\vec c = 2\hat i + 4\hat j + 5\hat k\)

  1. 3
  2. 5
  3. - 5
  4. 7

Answer (Detailed Solution Below)

Option 3 : - 5

Scalar Triple Product Question 5 Detailed Solution

Concept:

Scalar Triple Product: 

If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\), \(\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) and \(\vec c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\) then their scalar triple product is defined as

\(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

Calculation:

Given: \(\vec a = \hat i + 3\hat j + 4\hat k\;,\;\vec b = 3\hat i + 4\hat j + 2\hat k\;and\;\vec c = 2\hat i + 4\hat j + 5\hat k\)

As we know that, the scalar triple product of three vectors is 

\(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{1}}&{{3}}&{{4}}\\ {{3}}&{{4}}&{{2}}\\ {{2}}&{{4}}&{{5}} \end{array}} \right|\)

\(\Rightarrow 1 \times (20 - 8) - 3 \times (15 - 4) + 4 \times (12 - 8) \\ \Rightarrow-5\)

Hence, the correct option is 3.

Scalar Triple Product Question 6:

If \(\vec{a}=\hat{i}-\hat{k}\)

\(\vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}\)

\(\vec{c}=y\hat{i}+x\hat{j}+(1+x-y)\hat{k}\)

then \(\vec{a}\cdot (\vec{b}\times \vec{c})\) depends on

  1. x only
  2. y only
  3. both x and y
  4. neither x nor y

Answer (Detailed Solution Below)

Option 4 : neither x nor y

Scalar Triple Product Question 6 Detailed Solution

Concept:

\(\vec{a}=a_1\hat{i} +a_2\hat{j}+ a_3 \hat{k}\)

\(\rm\vec{b}=b_1\hat{i} +b_2\hat{j}+ b_3 \hat{k}\)

\(\rm \vec{c}=c_1\hat{i} +c_2\hat{j}+ c_3 \hat{k}\)

\(\vec{a}\cdot (\vec{b}\times \vec{c})\) = \(\rm \begin{vmatrix} a_1& a_2 &a_3 \\ b_1& b_2 &b_3 \\ c_1& c_2 &c_3 \end{vmatrix}\)

Calculations:

Given, 

 \(\vec{a}=\hat{i}-\hat{k}\)

\(\vec{b}=x\hat{i}+\hat{j}+(1-x)\hat{k}\)

\(\vec{c}=y\hat{i}+x\hat{j}+(1+x-y)\hat{k}\)

then \(\vec{a}\cdot (\vec{b}\times \vec{c})\) = \(\rm \begin{vmatrix} 1& 0 &-1 \\ x &1 &1-x \\ y &x & 1+x -y \end{vmatrix}\)

\(\vec{a}\cdot (\vec{b}\times \vec{c})\) = [1(1 + x - y) - x( 1 - x)] - 0 - 1(x- y)

\(\vec{a}\cdot (\vec{b}\times \vec{c})\) = 1 + x - y - x + x - x2 + y

\(\vec{a}\cdot (\vec{b}\times \vec{c})\) = 1

Hence,  \(\vec{a}\cdot (\vec{b}\times \vec{c})\) depends on neither on x nor on y.

Scalar Triple Product Question 7:

If the volume of a parallelepiped whose adjacent edges are

\(\rm \vec a\) = 2î + 3ĵ + 4k̂

\(\rm \vec b\) = î + αĵ + 2k̂

\(\rm \vec c\) = î + 2ĵ + αk̂

is 15 then α = ?

  1. 1
  2. \(\dfrac52\)
  3. \(\dfrac92\)
  4. 0

Answer (Detailed Solution Below)

Option 3 : \(\dfrac92\)

Scalar Triple Product Question 7 Detailed Solution

Concept:

For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:

  • Dot Product is defined as \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).
  • Cross Product is defined as \(\rm \vec A\times \vec B=\vec n|\vec A||\vec B|\sin \theta\) where \(\rm \vec n\) is the unit vector perpendicular to the plane containing \(\rm \vec A\) and \(\rm \vec B\).

 

For three vectors \(\rm \vec A\)\(\rm \vec B\) and \(\rm \vec C\):

  • Triple Cross Product: is defined as: \(\rm \vec A\times(\vec B\times\vec C)=(\vec A.\vec C)\vec B-(\vec A.\vec B)\vec C\).
  • Triple Scalar Product (Box Product): is defined as \(\rm [\vec A\ \vec B\ \vec C]=\vec A.(\vec B\times\vec C)=\begin{vmatrix} \rm a_1 & \rm a_2 & \rm a_3 \\ \rm b_1 & \rm b_2 & \rm b_3 \\\rm c_1 & \rm c_2 & \rm c_3 \end{vmatrix}\).

 

Volume of a parallelepiped, with vectors \(\rm \vec a\)\(\rm \vec b\) and \(\rm \vec c\) as its sides, is given by the box product of the three vectors.

  • Volume = \(\rm [\vec a\ \vec b\ \vec c]\).

 

Calculation:

The sides of the parallelepiped are:

\(\rm \vec a\) = 2î + 3ĵ + 4k̂

\(\rm \vec b\) = î + αĵ + 2k̂

\(\rm \vec c\) = î + 2ĵ + αk̂

∴ Volume = \(\rm \rm [\vec a\ \vec b\ \vec c]=\begin{vmatrix} 2 & 3 & 4 \\ 1 & \alpha & 2 \\ 1 & 2 & \alpha \end{vmatrix}\) = 15

⇒ 2(α2 - 4) + 3(2 - α) + 4(2 - α) = 15

⇒ 2α2 - 8 + 6 - 3α + 8 - 4α = 15

⇒ 2α2 - 7α - 9 = 0

⇒ 2α2 - 9α + 2α - 9 = 0

⇒ α(2α - 9) + (2α - 9) = 0

⇒ (2α - 9)(α + 1) = 0

⇒ 2α - 9 = 0 OR α + 1 = 0

⇒ α = \(\dfrac92\) OR α = -1.

Scalar Triple Product Question 8:

Find the scalar triple product of the vectors \(\vec a = 2\hat i + 3\hat j + 4\hat k\;,\;\vec b = 3\hat i + 4\hat j + 6\hat k\;and\;\vec c = 2\hat i + 4\hat j + \hat k\)

  1. 3
  2. 4
  3. 6
  4. 5

Answer (Detailed Solution Below)

Option 1 : 3

Scalar Triple Product Question 8 Detailed Solution

Concept:

Scalar Triple Product: 

If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\)\(\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) and \(\vec c = {c_1}\hat i + {c_2}\hat j + {c_3}\hat k\) then their scalar triple product is defined as \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

Calculation:

Given: \(\vec a = 2\hat i + 3\hat j + 4\hat k\;,\;\vec b = 3\hat i + 4\hat j + 6\hat k\;and\;\vec c = 2\hat i + 4\hat j + \hat k\)

As we know that, the scalar triple product of three vectors is \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}}\\ {{c_1}}&{{c_2}}&{{c_3}} \end{array}} \right| = \left[ {a\;b\;c} \right]\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = \left| {\begin{array}{*{20}{c}} {{2}}&{{3}}&{{4}}\\ {{3}}&{{4}}&{{6}}\\ {{2}}&{{4}}&{{1}} \end{array}} \right|\)

⇒ \(\vec a \cdot \left( {\vec b \times \;\vec c} \right) = 2 \times (4 - 24) - 3 \times (3 - 12) + 4 \times (12 - 8) = 3\)

Hence, the correct option is 1.

Scalar Triple Product Question 9:

If vectors 2i – j + k, i + 2j – 3k and 3i + aj + 5k are coplanar, then the value of a is 

  1. 2
  2. -2
  3. -1
  4. -4

Answer (Detailed Solution Below)

Option 4 : -4

Scalar Triple Product Question 9 Detailed Solution

Concept:

1. The vectors which are parallel to the same plane , or lie on the same plane are called coplanar vectors.

2. Three vectors are coplanar if their scalar triple product is zero. \(⃗{a} \cdot (⃗{b} \times ⃗{c}) = 0 \)

Calculation

Let \(\vec{a} \) = 2i – j + k

\(\vec{b} \) =i + 2j – 3k

\(\vec{c} \)= 3i + a j + 5k

\( ⃗{b} \times ⃗{c} = \begin{vmatrix} \hat{i} &\hat{j}& \hat{k}\\ 1 & 2& -3\\ 3& a& 5\\\end{vmatrix} \)

\(\hat{i}(10+3a)-\hat{j}(5+9)+\hat{k}(a-6) \)

\((10+3a)\hat{i}-14\hat{j}+(a-6)\hat{k} \)

⇒ \(\vec {a}\cdot(\vec{b}\times \vec {c})=(2\hat{i}-\hat{j}+\hat{k})\cdot((10+3a)\hat{i}-14\hat{j}+(a-6)\hat{k}) \)

2(10 + 3a) - (-14) + (a - 6)

⇒ 20 + 6a + 14 + a - 6

7a + 28

Since 7a + 28 = 0

⇒ a = -4

Hence Option(4) is correct.

Scalar Triple Product Question 10:

\(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) are non-zero non-coplanar vectors and \(\overrightarrow{p}=\frac{\overrightarrow{b}\times\overrightarrow{c}}{[bca]},\overrightarrow{q}=\frac{\overrightarrow{c}\times\overrightarrow{a}}{[cab]},\overrightarrow{r}=\frac{\overrightarrow{a}\times\overrightarrow{b}}{[abc]}\), then [abc] =

  1. [pqr]
  2. [pqr]2
  3. [pqr]-1
  4. 0

Answer (Detailed Solution Below)

Option 1 : [pqr]

Scalar Triple Product Question 10 Detailed Solution

Concept:

If \(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\) are three vectors, then \(\overrightarrow{a}\cdot(\overrightarrow{b}\times \overrightarrow{c})\) is called the scalar triple product or box product, denoted by [abc]

  • [abc] = [bca] = [cab] (It follows cyclic order)

For four vectors, \(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c},\overrightarrow{d}\) quadruple product is given by:

\((\overrightarrow{a}\times\overrightarrow{b})\times (\overrightarrow{c}\times\overrightarrow{d})\) = [abd]c - [abc]d

Calculation:

We have, \(\overrightarrow{p}=\frac{\overrightarrow{b}\times\overrightarrow{c}}{[bca]},\overrightarrow{q}=\frac{\overrightarrow{c}\times\overrightarrow{a}}{[cab]},\overrightarrow{r}=\frac{\overrightarrow{a}\times\overrightarrow{b}}{[abc]}\)

[pqr] = \([\frac{\overrightarrow{b}\times\overrightarrow{c}}{[bca]}\frac{\overrightarrow{c}\times\overrightarrow{a}}{[cab]}\frac{\overrightarrow{a}\times\overrightarrow{b}}{[abc]}]\)

\(\rm[\vec p\ \vec q\ \vec r]=\frac{1}{[\vec a\ \vec b\ \vec c]}\left[(\vec b\times \vec c)\ (\vec c \times \vec a)\ (\vec a \times \vec b)\right]\)

\(\Rightarrow \rm[\vec p \vec q\vec r]=\frac{1}{[\vec a\vec b\vec c]}(\vec b\times \vec c)\left((\vec c \times \vec a)\times(\vec a \times \vec b)\right)\)      ...........(1)

∵ \(\rm (\vec c \times \vec a)\times(\vec a \times \vec b)=\left((\vec c\times \vec a).\vec b\right)\vec a-\left((\vec c \times \vec a).\vec a\right)\vec b\)

\(\Rightarrow \rm (\vec c \times \vec a)\times(\vec a \times \vec b)=[\vec c\ \vec a\ \vec b]\vec a-0\)

\(\Rightarrow \rm (\vec c \times \vec a)\times(\vec a \times \vec b)=[\vec a\ \vec b\ \vec c]\vec a\)      .......(2)

put this in (1), 

\(\Rightarrow \rm[\vec p \vec q\vec r]=\frac{1}{[\vec a\vec b\vec c]}(\vec b\times \vec c).[\vec a\ \vec b\ \vec c]\vec a\)

\(\rm=\frac{[\vec a\ \vec b \ \vec c]}{[\vec a\ \vec b\ \vec c]}(\vec b\times \vec c).\vec a\)

\(\rm =1[\vec b\ \vec c\ \vec a]=[\vec a\ \vec b\ \vec c]\)

The correct answer is Option 1

Get Free Access Now
Hot Links: teen patti game teen patti rich teen patti - 3patti cards game teen patti king teen patti master golden india