Power Series MCQ Quiz in मल्याळम - Objective Question with Answer for Power Series - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Apr 20, 2025

നേടുക Power Series ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Power Series MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Power Series MCQ Objective Questions

Top Power Series MCQ Objective Questions

Power Series Question 1:

Let {an : n ≥ 1} n be a sequence of real numbers such that n=1an is convergent and n=1|an| is divergent. Let R be the radius of convergence of the power series n=1anxn. Then we can conclude that

  1. 0 < R < 1
  2. R = 1
  3. 1 <  R < ∞ 
  4. R = 

Answer (Detailed Solution Below)

Option 2 : R = 1

Power Series Question 1 Detailed Solution

Concept -

Let {an : n ≥ 1} n be a sequence of real numbers such that n=1an is convergent and n=1|an| is divergent.

Let R be the radius of convergence of the power series n=1anxn.

Then we can conclude that R = 1 only.

Explanation -

According to the given concept,

option (ii) is correct.

Power Series Question 2:

The radius of convergence of the series n=1zn2 is

  1. 0
  2. ∞ 
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Power Series Question 2 Detailed Solution

Concept -

If the power series is given by n=0anzn2

 then Radius of convergence R of the power series is 

1R=limn(an)1n2

Explanation - 

Here an=1

1R=limn(1)1n2

⇒ R = 1

Hence the option (iii) is correct.

Power Series Question 3:

Let P(x) be a polynomial of degree d ≥ 2. The radius of convergence of the power series n=0p(n)zn is

  1. 0
  2. 1
  3. ∞ 
  4. dependent on d

Answer (Detailed Solution Below)

Option 2 : 1

Power Series Question 3 Detailed Solution

Given -

Let P(x) be a polynomial of degree d ≥ 2. The radius of convergence of the power series n=0p(n)zn  is R.

Concept -

If the power series is given by n=0anZn

 then Radius of convergence R of the power series is 

1R=limnan+1an

Explanation - 

Let an=p(n)

and p(x)=b0+b1x+.....+bnxn

1R=limnp(n+1)p(n)=1

⇒ R =1 

Hence the option (2) is correct.

Power Series Question 4:

Consider the following power series in the complex variable z:

f(z)=n=1 n log n zn, g(z)=n=1en2nzn.

If r, R are the radii of convergence of f and g respectively, then

  1.  r = 0, R = 1.
  2.  r = 1, R = 0.
  3. r = 1, R = ∞.
  4.  r = , R = 1.

Answer (Detailed Solution Below)

Option 2 :  r = 1, R = 0.

Power Series Question 4 Detailed Solution

Given -

Consider the following power series in the complex variable z:

f(z)=n=1 n log n zn, g(z)=n=1en2nzn.

If r, R are the radii of convergence of f and g respectively.

Concept -

If the power series is given by n=0anZn

 then Radius of convergence R of the power series is 

1R=limnan+1an=limnan1n

Explanation - 

(a) let an =  n log n

1r=limnan+1an

⇒ 1r=limn(n+1)log(n+1)nlog(n)

⇒ 1r=limn(n+1)log(n+1)nlog(n)=1

⇒ r = 1

(a) let an =  en2n

1R=limnan1n

⇒ 1R=limn[en2n]1n=

⇒ R = 0

Hence option (ii) is correct.

Power Series Question 5:

Which of the following is the radius of convergence of the series n=0(1+b0)(1+1n)n2zn

  1. 1(1+b0)e
  2. 1(1+b0)
  3. (1+b0)e
  4. e

Answer (Detailed Solution Below)

Option 1 : 1(1+b0)e

Power Series Question 5 Detailed Solution

Concept:

Radius of convergence of ∑(1 + b0) an(z - z0)n is R(1+b0) where 1R=limn(|an|)1/n.

Explanation:

Series = n=0(1+b0)(1+1n)n2zn

1R=limn(|an|)1/n

1R=limn[(1+1n)n2]1/n

1R=limn[(1+1n)n]

1R=e

R = 1/e

So radius of convergence of the series is

1(1+b0)e

Option (1) is true.

Power Series Question 6:

For the power series f(z) = n=0zn2n+1 the region of convergence is

  1. |z| < 1
  2. |z| < √2
  3. |z| < 2
  4. |z| < 1/2

Answer (Detailed Solution Below)

Option 3 : |z| < 2

Power Series Question 6 Detailed Solution

Concept:

The region of convergence of ∑ anzn is |z| < R where

 1R=limnan+1an

Explanation:

f(z) = n=0zn2n+1

an12n+1

1R=limnan+1an

1R=limn2n+12n+1+1

1R=limn2n(1+12n)2n(2+12n)

1R=12

So, R = 2

Hence region of convergence is |z| < 2

Option (3) is true.

Power Series Question 7:

The power series n=03nz2n converges for 

  1. |z| < 3
  2. |z| < √3
  3. |z| < 1/3
  4. |z| < 1/√3

Answer (Detailed Solution Below)

Option 2 : |z| < √3

Power Series Question 7 Detailed Solution

Concept:

(i) ROC: A non-negative number R is said to be radius of convergent of the power series n=0anzn if the power series converges for |z| < R and diverges for |z| > R. 

(ii) By D’Alembert ratio test 1R=limnan+1an

(iii) If the radius of convergence of n=0anzn is R the  the radius of convergence of n=0anznk is R1/k

Explanation:

Series is n=03nz2n

here an = 3-n

So, ROC of n=03nzn is given by

1R=limnan+1an = limn3n3n+1 = 13

So, R = 3

Then ROC of n=03nz2n is √3

Hence, the series converges for

|z| < √3

Option (2) is true.

Power Series Question 8:

Match List-I with List-II

List-I

Series

List-II

Radius of convergence

(A)

(iz12+i)n

(I)

0

(B)

(21z2)n

(II)

√5

(C)

(n+2i)nzn

(III)

1

(D)

(1+1n)nzn

(IV)

√2

 

Choose the correct answer from the options given below:

  1. (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
  2. (A) - (I), (B) - (III), (C) - (II), (D) - (IV)
  3. (A) - (II), (B) - (IV), (C) - (I), (D) - (III)
  4. (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

Answer (Detailed Solution Below)

Option 3 : (A) - (II), (B) - (IV), (C) - (I), (D) - (III)

Power Series Question 8 Detailed Solution

Explanation:

D. Given Series is (1+1n)nzn

an=(1+1n)n  

(an)1n=(1+1n) 
 

limn(an)1n=limn(1+1n)=1

ROC = 1

⇒ (D) → IV (which is in only option 3) 

Hence Option(3) is the correct answer.

 

 

 

 

Power Series Question 9:

Consider the power series  

f(x)=n=2log(n)xn.

The radius of convergence of the series f(x) is  

  1. 0
  2. 1
  3. 3

Answer (Detailed Solution Below)

Option 2 : 1

Power Series Question 9 Detailed Solution

Concept:

The radius of convergence R of a power series ∑anxn is given by

1R=limn|anan+1|

Explanation:

f(x)=n=2log(n)xn

Here an = log(n)

So, 

1R=limn|lognlog(n+1)|

⇒ 1R=limnlognlog(n+1)

Using L'hospital rule

1R=limn1n1n+1

⇒ 1R=limnn+1n

⇒ 1R=limn(1+1n)

⇒ 1R=1

⇒ R = 1

So, the radius of convergence of the series f(x) is  1

Option (2) is true

Get Free Access Now
Hot Links: teen patti gold apk download teen patti master old version happy teen patti teen patti plus