ASK Transmitter MCQ Quiz - Objective Question with Answer for ASK Transmitter - Download Free PDF

Last updated on Apr 20, 2025

Latest ASK Transmitter MCQ Objective Questions

ASK Transmitter Question 1:

In ______ a Carrier is transmitted for a 1-bit, and nothing is transmitted for 0-bit, this is analogous to flashing light communication.

  1. M-ary digital modulation
  2. Phase shift keying
  3. 8-point phase shift keying
  4. On-off keying

Answer (Detailed Solution Below)

Option 4 : On-off keying

ASK Transmitter Question 1 Detailed Solution

ASK System:

1. For ASK Transmitter on-off keying is used.

2. In Amplitude Shift Keying (ASK) binary 1 is represented with the presence of carrier and binary 0 is represented with the absence of the carrier.

1 : s1(t) = Ac cos 2πfct

0 : s2 (t) = 0

F1 T.S Madhu 21.07.20 D 3

F1 T.S Madhu 21.07.20 D 4

 

ASK Transmitter Question 2:

Which of the following modulation schemes gives the maximum probability of error?

  1. DBPSK
  2. PSK
  3. BFSK
  4. ASK

Answer (Detailed Solution Below)

Option 4 : ASK

ASK Transmitter Question 2 Detailed Solution

Analysis:

The probability of error for ASK, PSK, and FSK is given as

\(P_{e_{ASK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{4N_0}}})} \space \)

\(P_{e_{PSK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{N_0}}})} \space \)

\(P_{e_{FSK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{2N_0}}})} \space \)

Q(x)  is a decreasing function therefore as x increases the value of Q(x) decreases

\( \sqrt {\dfrac {A^2_c T_b \space }{N_0}} \space > \space \sqrt {\dfrac {A^2_c T_b \space }{2N_0}} \space > \space \sqrt {\dfrac {A^2_c T_b \space }{4N_0}} \space \)

Therefore, 

\( Q (\sqrt {\dfrac {A^2_c T_b \space }{4N_0}}) \space > \space Q(\sqrt {\dfrac {A^2_c T_b \space }{2N_0}}) \space > \space Q( \sqrt {\dfrac {A^2_c T_b \space }{N_0}}) \space \)

PASK  >  PeFSK   > PPSK

ASK modulation scheme gives Maximum probability of error.

Top ASK Transmitter MCQ Objective Questions

In ______ a Carrier is transmitted for a 1-bit, and nothing is transmitted for 0-bit, this is analogous to flashing light communication.

  1. M-ary digital modulation
  2. Phase shift keying
  3. 8-point phase shift keying
  4. On-off keying

Answer (Detailed Solution Below)

Option 4 : On-off keying

ASK Transmitter Question 3 Detailed Solution

Download Solution PDF

ASK System:

1. For ASK Transmitter on-off keying is used.

2. In Amplitude Shift Keying (ASK) binary 1 is represented with the presence of carrier and binary 0 is represented with the absence of the carrier.

1 : s1(t) = Ac cos 2πfct

0 : s2 (t) = 0

F1 T.S Madhu 21.07.20 D 3

F1 T.S Madhu 21.07.20 D 4

 

Which of the following modulation schemes gives the maximum probability of error?

  1. DBPSK
  2. PSK
  3. BFSK
  4. ASK

Answer (Detailed Solution Below)

Option 4 : ASK

ASK Transmitter Question 4 Detailed Solution

Download Solution PDF

Analysis:

The probability of error for ASK, PSK, and FSK is given as

\(P_{e_{ASK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{4N_0}}})} \space \)

\(P_{e_{PSK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{N_0}}})} \space \)

\(P_{e_{FSK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{2N_0}}})} \space \)

Q(x)  is a decreasing function therefore as x increases the value of Q(x) decreases

\( \sqrt {\dfrac {A^2_c T_b \space }{N_0}} \space > \space \sqrt {\dfrac {A^2_c T_b \space }{2N_0}} \space > \space \sqrt {\dfrac {A^2_c T_b \space }{4N_0}} \space \)

Therefore, 

\( Q (\sqrt {\dfrac {A^2_c T_b \space }{4N_0}}) \space > \space Q(\sqrt {\dfrac {A^2_c T_b \space }{2N_0}}) \space > \space Q( \sqrt {\dfrac {A^2_c T_b \space }{N_0}}) \space \)

PASK  >  PeFSK   > PPSK

ASK modulation scheme gives Maximum probability of error.

ASK Transmitter Question 5:

In ______ a Carrier is transmitted for a 1-bit, and nothing is transmitted for 0-bit, this is analogous to flashing light communication.

  1. M-ary digital modulation
  2. Phase shift keying
  3. 8-point phase shift keying
  4. On-off keying

Answer (Detailed Solution Below)

Option 4 : On-off keying

ASK Transmitter Question 5 Detailed Solution

ASK System:

1. For ASK Transmitter on-off keying is used.

2. In Amplitude Shift Keying (ASK) binary 1 is represented with the presence of carrier and binary 0 is represented with the absence of the carrier.

1 : s1(t) = Ac cos 2πfct

0 : s2 (t) = 0

F1 T.S Madhu 21.07.20 D 3

F1 T.S Madhu 21.07.20 D 4

 

ASK Transmitter Question 6:

Which of the following modulation schemes gives the maximum probability of error?

  1. DBPSK
  2. PSK
  3. BFSK
  4. ASK

Answer (Detailed Solution Below)

Option 4 : ASK

ASK Transmitter Question 6 Detailed Solution

Analysis:

The probability of error for ASK, PSK, and FSK is given as

\(P_{e_{ASK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{4N_0}}})} \space \)

\(P_{e_{PSK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{N_0}}})} \space \)

\(P_{e_{FSK}} = Q ( {{\sqrt {\dfrac {A^2_c T_b \space }{2N_0}}})} \space \)

Q(x)  is a decreasing function therefore as x increases the value of Q(x) decreases

\( \sqrt {\dfrac {A^2_c T_b \space }{N_0}} \space > \space \sqrt {\dfrac {A^2_c T_b \space }{2N_0}} \space > \space \sqrt {\dfrac {A^2_c T_b \space }{4N_0}} \space \)

Therefore, 

\( Q (\sqrt {\dfrac {A^2_c T_b \space }{4N_0}}) \space > \space Q(\sqrt {\dfrac {A^2_c T_b \space }{2N_0}}) \space > \space Q( \sqrt {\dfrac {A^2_c T_b \space }{N_0}}) \space \)

PASK  >  PeFSK   > PPSK

ASK modulation scheme gives Maximum probability of error.

ASK Transmitter Question 7:

In ASK system, pulse waveform are defined as;

\(\rm S_1(t)=\sqrt2 \ sin\left[\frac{\pi t}{4T}\right]mV\) 0 ≤ t ≤ 4T; bit 1

S2 (t) = 0; 4T ≤ t ≤ 8T ; bit 0

Find probability of error, if symbols are equiprobable and noise is AWGN with two sided PSD is 10-12 W/Hz. [assume Tb = 1 μsec]

  1. Q[500]
  2. Q[0.5]
  3. Q[√0.5]
  4. Q[1]

Answer (Detailed Solution Below)

Option 2 : Q[0.5]

ASK Transmitter Question 7 Detailed Solution

Concept:

"If symbols are equiprobable ⇒ coherent detection"

In ASK, when coherent detection is done, then

Probability of error; \(\rm P_e=Q\left[√{{\frac{d^2min}{2No}}}\right]\)

where d2min = Eb (bit energy)

No = PSD

Calculation:

For bit 1 

⇒ A = √2 × 10-3 volt

∴ \(\rm E_b=\frac{A^2}{2}× T_b=\frac{(√2×10^{-3})^2}{2}×10^{-6}\)

= 10-12 J

∴ Two sided PSD ⇒ \(\rm \frac{No}{2}=10^{-12}\)

No = 2 × 10-12 w/Hz

∴ \(\rm P_e=Q\left[√{\frac{E_b}{2No}}\right]\)

= Q[0.5]

Note:-

for coherent Detection for equiprobable symbol;

\(\rm P_e=Q\left[√{\frac{d^2min}{2No}}\right]\)

dmin = √Eb ---- for ASK

dmin = √2Eb ---- for FSK

dmin = 2√Eb ---- for PSK

For Non-coherent Detection

\(\rm P_e=\frac{1}{2}e^{\frac{-E_b}{No}}\) --- for PSK

\(\rm P_e=\frac{1}{2}e^{\frac{-E_b}{2No}}\) ---- for ASK and FSK

Get Free Access Now
Hot Links: teen patti gold old version teen patti cash game teen patti all game teen patti list teen patti all app